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Outline of the lecture

Key concepts introduced in the fifth lecture

◮ Weak formulation of hyperbolic PDEs as basis
for Continuous Galerkin and Discontinuous Galerkin
discretizations

◮ Finite element polynomial spaces for DG discretizations

◮ Lagrange and Legendre basis for s polynomial spaces of DG
discretizations

◮ Fully discrete formulation in space: quadrature rules
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Weak formulation and FE discretizations

Weak formulation and FE discretizations
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Weak formulation and FE discretizations

Weak solution of conservation laws

∂c

∂t
+

∂

∂x
f (c) = 0

The function c(x , s) is a weak solution of the nonlinear conservation
law for s ∈ [0, t] with initial data c0(x) and boundary data
c(0, s) = g0(s), c(L, s) = gL(s) if for any φ ∈ C∞([0, L] × [0, t]) it holds

∫ L

0
c(x , t)φ(x , t) dx +

∫ t

0
f (gL(s))φ(L, s) ds −

∫ t

0
f (g0(s))φ(0, s) ds

−
∫ t

0

∫ L

0

[

c
∂φ

∂s
+ f (c)

∂φ

∂x

]

dx ds = 0

◮ φ ∈ C∞([0, L] × [0,T ]) : functions of space and time,
differentiable infinitely many times

◮ For discretization purposes, a concept of weak solution with
respect to space variables only is introduced

L. Bonaventura (MOX) EASED Lecture 5 Keio University, 9.15.2015 5 / 33



Weak formulation and FE discretizations

Weak solution of conservation laws, space

dependent test functions
The function c(x , t) is a weak solution (with respect to space) of
the nonlinear conservation law for t ∈ [0,T ] with initial data c0(x)
and boundary data c(0, t) = g0(s), c(L, t) = gL(t) if for any
φ ∈ C∞([0, L]) it holds

∫ L

0

∂

∂t
c(x , t)φ(x) dx + f (gL(t))φ(L)− f (g0(t))φ(0)

−
∫ L

0
f (c(x , t))

∂φ

∂x
(x) dx = 0

◮ φ ∈ C∞([0, L]) : test functions of space only, differentiable
infinitely many times

◮ Interpretation: we do not care about discontinuities in time and
only focus on discontinuities in space

◮ Also known as weak form of the original PDE
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Weak formulation and FE discretizations

Galerkin methods (1)

◮ Assume that weak form is only satisfied for all test functions in
a finite dimensional function space

◮ Assume that the approximate solution belongs to a finite
dimensional function space

◮ Let φi , i = 1, . . . ,N be a basis for the finite dimensional space
of test functions, let ψj , j = 1, . . . ,M be a basis for the finite
dimensional space of solutions (ψ trial functions)

◮ The approximate solution will be of the form

c(x , t) ≈ ch(x , t) =

M
∑

j=1

cj(t)ψj(x)
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Weak formulation and FE discretizations

Galerkin methods (2)

The approximate solution will be determined imposing the weak
form of the equation for all φi , i = 1, . . . ,N :

M
∑

j=1

c ′i (t)

∫ L

0
ψj(x)φi (x) dx + f (gL(t))φi (L) − f (g0(t))φi (0)

−
∫ L

0
f (ch(x , t))

∂φj
∂x

(x) dx = 0

◮ Finite dimensional system of ODEs whose unknowns are the
solution coefficients cj(t)

◮ Many ways to choose test and basis functions: many different
Galerkin methods
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Weak formulation and FE discretizations

Galerkin methods (3)

◮ For all methods: define mesh, decomposition of computational
domain in subdomains called elements

◮ For all methods: test and basis functions depend
on the mesh elements

◮ Test functions different from basis functions:
Petrov - Galerkin methods

◮ Test functions identical to basis functions: standard Galerkin
(or Ritz - Galerkin) methods (only case we will see in detail)
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Weak formulation and FE discretizations

Continuous Galerkin method

◮ Test and basis functions: functions that are a) polynomials
when restricted to each element and b) continuous functions
over the whole domain

◮ Excellent for elliptic and parabolic problems, less so for
hyperbolic problems: no natural way to introduce upwinding

◮ Difficulties in using non conforming meshes and in introducing
variable degree basis in more than one dimension
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Weak formulation and FE discretizations

Discontinuous Galerkin method (1)

◮ Test and basis functions: functions that are a) polynomials
when restricted to each element, b) not required to be
continuous over the whole domain

◮ Extension of finite volume methods: numerical fluxes are
needed to define values at element interfaces
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Weak formulation and FE discretizations

Discontinuous Galerkin method (2)

◮ Excellent for hyperbolic problems, some problems with elliptic
parabolic problems: artificial stabilization terms are needed, but
complete theory now available

◮ Easy extension to non conforming meshes and to variable
degree basis in more than one dimension

◮ High order approximations with more compact stencil:
advantages for parallel implementations
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Polynomial spaces for DG discretizations

Polynomial spaces for DG discretizations
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Polynomial spaces for DG discretizations

Polynomial spaces (1)

◮ Divide solution interval [0, L] in Ne non overlapping elements
[xk− 1

2
, xk+ 1

2
] k = 1, . . . ,Ne of size ∆xk = xk+ 1

2
− xk− 1

2
,

h = max{∆xk}
◮ For each element k = 1, . . . ,Ne , define nonnegative integer

r = r(k) and local polynomial space

V r
k = P

r ([xk− 1
2
, xk+ 1

2
])

=
{

polynomials on [xk− 1
2
, xi+ 1

2
] of degree ≤ r(k)

}

◮ Define p = max{r(k), k = 1, . . . ,Ne} and global polynomial space

V
p
h =

{

ϕ : ϕ ∈ L∞([0, L]), ϕ|[x
k− 1

2
,x

k+1
2
] ∈ V r

k

}
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Polynomial spaces for DG discretizations

Polynomial spaces (2)

◮ V
p
h

is a finite dimensional linear space, of dimension at most
Ne × (p + 1), V r

k is a finite dimensional linear space, of
dimension r(k) + 1

◮ For the weak form of the equation to hold, it is sufficient that
it holds for all φi , i = 1, . . . ,N of a linear basis of V p

h

◮ Since the functions of V p
h are defined elementwise and each

element of V r
k does not depend on the functions of V r

l , k 6= l

the weak form of the equation will be imposed element by
element

◮ Increasing the value of p, a better approximation is achieved on
smooth functions; if p = 0, first order finite volume methods are
recovered

L. Bonaventura (MOX) EASED Lecture 5 Keio University, 9.15.2015 15 / 33



Polynomial spaces for DG discretizations

At the element edges

◮ For ϕ ∈ V
p
h define ϕ±

k± 1
2

= limx→x
k± 1

2

ϕ(x), with x ∈ [xk− 1
2
, xk+ 1

2
]

◮ Define the average and the jump of the scalar function ϕ ∈ V
p
h

across the edge xk+ 1
2
as

{ϕ}k+ 1
2
=

1

2

(

ϕ+
k+ 1

2

+ ϕ−

k+ 1
2

)

[[ϕ]]k+ 1
2
=

(

ϕ+
k+ 1

2

− ϕ−

k− 1
2

)

◮ Introduce a numerical flux function f̂ (a, b) and define for
ch ∈ V

p
h

fk+ 1
2
(t) = f̂ (c−

h,k+ 1
2

(t), c+
k+ 1

2

(t))
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Polynomial spaces for DG discretizations

Discontinuos Galerkin methods, elementwise (1)

◮ Assume that the weak form is satisfied for all test functions in
V r
k , k = 1, . . . ,Ne

◮ Assume that the approximate solution restricted to [xk− 1
2
, xk+ 1

2
]

belongs to V r
k

◮ Let φk,i , i = 1, . . . ,N(k) be a basis for V r
k : it follows that if

ch(x , t)|[x
k− 1

2
,x

k+1
2
] ∈ V r

k one has

c(x , t)|[x
k− 1

2
,x

k+1
2
] ≈ ch(x , t)|[x

k− 1
2
,x

k+1
2
] =

N(k)
∑

j=1

ck,j (t)φk,j (x)
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Polynomial spaces for DG discretizations

Discontinuos Galerkin methods, elementwise (2)

The numerical solution will be determined by imposing that
ch(x , t)|[x

k− 1
2
,x

k+1
2
] satisfies the weak form of the equation

for each [xk− 1
2
, xk+ 1

2
]. This is equivalent to:

for all k = 1, . . . ,Ne , for all basis functions φk,i (x), i = 1, . . . , r(k) + 1

N(k)
∑

j=1

c ′k,j (t)

∫ x
k+1

2

x
k− 1

2

φk,j (x)φk,i (x) dx

+f̂ (c−
h,k+ 1

2

(t), c+
h,k+ 1

2

(t))φk,i (xk+ 1
2
)− f̂ (c−

h,k− 1
2

(t), c+
h,k− 1

2

(t))φk,i (xk− 1
2
)

−
∫ x

k+1
2

x
k− 1

2

f (ch(x , t))
∂φk,i
∂x

(x) dx = 0
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Bases of polynomial spaces

Bases of polynomial spaces
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Bases of polynomial spaces

Lagrange basis (1)

◮ Let x
(k)
0 < x

(k)
1 < · · · < x

(k)
p nodes belonging to [xk− 1

2
, xk+ 1

2
]

◮ Lagrange basis functions on [xk− 1
2
, xk+ 1

2
] are defined as

Lk,i (x) = Πj 6=i

x − x
(k)
j

x
(k)
i − x

(k)
j

i = 0, . . . , r(k),

◮ Important property of Lagrange basis:

Lk,i (x
(k)
i ) = 1, Lk,i (x

(k)
j ) = 0 i 6= j

◮ As a result, if Lagrange basis is chosen,

ch(x
(k)
l
, t) =

N(k)
∑

j=1

ck,j (t)Lk,j (x
(k)
l

) = ck,l (t)

Coefficients ck,l (t) are the nodal values of ch(x , t) at x
(k)
l
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Bases of polynomial spaces

Lagrange basis (2)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

◮ Lagrange basis with two nodes: linear approximation over each
element

◮ Each of the two basis functions is a polynomial of degree 1

◮ Their linear combination yields a polynomial of degree 1 that
approximates a given function
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Bases of polynomial spaces

Lagrange basis (3)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

◮ Lagrange basis with three nodes: quadratic approximation over
each element

◮ Each of the three basis functions is a polynomial of degree 2

◮ Their linear combination yields a polynomial of degree 2 that
approximates a given function
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Bases of polynomial spaces

Legendre basis (1)

◮ Consider polynomial basis 1, x − xk , (x − xk)
2, . . . , (x − xk)

p on
[xk− 1

2
, xk+ 1

2
]

◮ Orthogonalize by Gram-Schmidt procedure to obtain Legendre
polynomials Lk,i (x), i = 0, . . . , p

◮ Can also be defined by the recurrence relation

Lk,i+1(x) =
2i + 1

i + 1
(x − xk)Lk,i (x) −

i

i + 1
Lk,i (x), i = 1, 2, . . .

Lk,0(x) = 1,

Lk,1(x) = x − xk
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Bases of polynomial spaces

Legendre basis (2)

◮ Legendre polynomials: orthogonal basis

∫ x
k+1

2

x
k− 1

2

Lk,p(x)Lk,q(x) dx = 0 p 6= q

◮ As a result, if Legendre basis is chosen,

∫ x
k+1

2

x
k− 1

2

ch(x , t)Lk,i (x) dx =

N(k)
∑

j=1

ck,j (t)

∫ x
k+1

2

x
k− 1

2

Lk,j (x)Lk,i (x) dx

◮ Coefficients ck,j (t) are the modal coefficients of ch(x , t) :

ck,j (t) =

∫ x
k+1

2

x
k− 1

2

ch(x , t)Lk,j (x) dx/

∫ x
k+1

2

x
k− 1

2

Lk,j (x)
2 dx
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Bases of polynomial spaces

Legendre basis (3)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

◮ Legendre basis with two basis functions: linear approximation
over each element

◮ First basis function is a polynomial of degree 0 (constant),
second basis function is a polynomial of degree 1 (linear)

◮ Their linear combination yields a polynomial of degree 1
that approximates a given function
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Bases of polynomial spaces

Legendre basis (4)
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1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8
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−0.4
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0

0.2

0.4

0.6

0.8

1

◮ Legendre basis with three basis functions: quadratic
approximation over each element

◮ First basis function is a polynomial of degree 0 (constant),
second basis function is a polynomial of degree 1 (linear), third
basis function is a polynomial of degree 2 (quadratic)

◮ Their linear combination yields a polynomial of degree 2
that approximates a given function
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Fully discrete formulation: quadrature rules

Fully discrete formulation: quadrature rules
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Fully discrete formulation: quadrature rules

Numerical integration formulae

◮ Galerkin methods require the computation of integrals like

∫ x
k+1

2

x
k− 1

2

φk,j (x)φk,i (x) dx

∫ x
k+1

2

x
k− 1

2

f (ch(x , t))
∂φk,i
∂x

(x)

◮ Accurate numerical integration methods are required

◮ Gaussian integration (quadrature) formulae are usually
employed to achieve maximum accuracy
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Fully discrete formulation: quadrature rules

The master element

◮ Each element [xk− 1
2
, xk+ 1

2
] is mapped onto the master element

[−1, 1] via the function

x = x(k)(ξ) = xk +
∆xk

2
ξ xk =

xk− 1
2
+ xk+ 1

2

2

◮ All integrals to be computed are reformulated by this change of
variables as integrals on the master element

∫ x
k+1

2

x
k− 1

2

f (x) dx =

∫ 1

−1
f (x(k)(ξ)) x

′
(k)(ξ)dξ =

∫ 1

−1
f (xk+

∆xk

2
ξ)
∆xk

2
dξ

◮ In this way, all numerical quadrature formulae only need to be
introduced on [−1, 1]
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Fully discrete formulation: quadrature rules

Gauss Legendre quadrature rules on [−1, 1]

◮

∫ 1

−1
f (ξ)dξ ≈

q
∑

i=1

f (ξi )wi

with special points ξi , i = 1, . . . , q (Gaussian nodes) and special
numbers wi , i = 1, . . . , q (Gaussian weights)

◮ For Gauss - Legendre rules, nodes ξi , i = 1, . . . , q are the zeros
of the Legendre polynomial of degree q : Lq(ξi) = 0

◮ For Gauss - Legendre rules, weights wi , i = 1, . . . , q are given by

wi =
2

(1− ξ2i )[L
′
q(ξi )]

2

◮ Gauss Legendre rules with q nodes are exact for polynomials of
degree up to 2q − 1
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Fully discrete formulation: quadrature rules

Two nodes Gauss Legendre quadrature rule

◮ Gaussian nodes and weights:

ξ1 = −
√
3

3
ξ2 =

√
3

3
w1 = 1 w2 = 1

◮ Approximation of integral on master element

∫ 1

−1
f (ξ)dξ ≈

[

f

(

−
√
3

3

)

+ f

(√
3

3

)]

◮ Approximation of integral on generic element

∫ x
k+1

2

x
k− 1

2

f (x) dx ≈
[

f

(

xk −
√
3

3

∆xk

2

)

+ f

(

xk +

√
3

3

∆xk

2

)]

∆xk

2

◮ This formula is sufficiently accurate for computation of
solutions with P1 (piecewise linear) approximation
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Fully discrete formulation: quadrature rules

DG methods, fully discrete in space

For all k = 1, . . . ,Ne , for all basis functions φk,i (x), i = 1, . . . , r(k) + 1

N(k)
∑

j=1

c ′k,j (t)mi ,j = −f̂ (c−
h,k+ 1

2

(t), c+
h,k+ 1

2

(t))φk,i (xk+ 1
2
)

+f̂ (c−
h,k− 1

2

(t), c+
h,k− 1

2

(t))φk,i (xk− 1
2
) + Fk,i (ch(x , t))

mi ,j =

q
∑

l=1

φk,j (x
(k)
l

)φk,i (x
(k)
l

)wl

Fk,i (ch(x , t)) =

q
∑

l=1

f (ch(x
(k)
l
, t))

∂φk,i
∂x

(x
(k)
l

)wl

Here x
(k)
l , l = 1, . . . , q denotes the Gaussian nodes mapped onto

xk− 1
2
, xk+ 1

2
from [−1, 1]
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Fully discrete formulation: quadrature rules

Key concepts introduced in the fifth lecture

◮ Weak form of hyperbolic PDEs leads to DG discretization

◮ Approximation by polynomials expressed in terms of Lagrange
or Legendre basis

◮ Fully discrete formulation in space is obtained by numerical
quadrature rules

◮ A nonlinear system of ODEs is obtained that couples the
evolution of unknown coefficients in different elements
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