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Outline of the lecture

Key concepts introduced in the fifth lecture

v

Weak formulation of hyperbolic PDEs as basis
for Continuous Galerkin and Discontinuous Galerkin
discretizations

v

Finite element polynomial spaces for DG discretizations

Lagrange and Legendre basis for s polynomial spaces of DG
discretizations

v

v

Fully discrete formulation in space: quadrature rules
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Weak formulation and FE discretizations

Weak solution of conservation laws

8c 0
— + —f 0
ot ax (c) =
The function c(x, s) is a weak solution of the nonlinear conservation

law for s € [0, t] with initial data ¢;(x) and boundary data
c(0,s) = go(s), c(L,s) = gi(s) if for any ¢ € C>°([0, L] x [0, t]) it holds

t

L t
| etxttotee) ax+ [ Flanolts) ds— [ an(s)o(0.5) o

// [—+f %} dx ds =0

» ¢ € C*([0, L] x [0, T]) : functions of space and time,
differentiable infinitely many times

» For discretization purposes, a concept of weak solution with
respect to space variables only is introduced @
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Weak formulation and FE discretizations

Weak solution of conservation laws, space
dependent test functions

The function c(x, t) is a weak solution (with respect to space) of
the nonlinear conservation law for t € [0, T] with initial data c(x)
and boundary data c¢(0,t) = go(s), c(L,t) = gi(t) if for any

¢ € ([0, 1]) it holds

L
/0 (o, 100(x) o+ Flga(6)o(L) — F(gol1))(0)
L
—/O Flelx, )92 (x) o = 0

» ¢ € C*([0,L]) : test functions of space only, differentiable
infinitely many times

> Interpretation: we do not care about discontinuities in time and
only focus on discontinuities in space

» Also known as weak form of the original PDE @
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Weak formulation and FE discretizations

Galerkin methods (1)

» Assume that weak form is only satisfied for all test functions in
a finite dimensional function space

» Assume that the approximate solution belongs to a finite
dimensional function space

» Let ¢;, i=1,...,N be a basis for the finite dimensional space
of test functions, let ¢);, j =1,..., M be a basis for the finite
dimensional space of solutions (¢ trial functions)

» The approximate solution will be of the form

M

c(x,t) = anlx,t) = ) G(t)u(x)

j=1
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Weak formulation and FE discretizations

Galerkin methods (2)

The approximate solution will be determined imposing the weak
form of the equation for all ¢;, i=1,... N:

M
ce) [ 50600 o (Do)~ Hgo1)60)

j= 1

L
_/O F(cn(x, t))a(b (x) dx =0

» Finite dimensional system of ODEs whose unknowns are the
solution coefficients ¢;(t)

» Many ways to choose test and basis functions: many different
Galerkin methods
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Weak formulation and FE discretizations

Galerkin methods (3)

» For all methods: define mesh, decomposition of computational
domain in subdomains called elements

» For all methods: test and basis functions depend
on the mesh elements

» Test functions different from basis functions:
Petrov - Galerkin methods

» Test functions identical to basis functions: standard Galerkin
(or Ritz - Galerkin) methods (only case we will see in detail)
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Weak formulation and FE discretizations

Continuous Galerkin method

» Test and basis functions: functions that are a) polynomials
when restricted to each element and b) continuous functions
over the whole domain

» Excellent for elliptic and parabolic problems, less so for
hyperbolic problems: no natural way to introduce upwinding

» Difficulties in using non conforming meshes and in introducing
variable degree basis in more than one dimension M|O[X
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Weak formulation and FE discretizations

Discontinuous Galerkin method (1)
\

» Test and basis functions: functions that are a) polynomials
when restricted to each element, b) not required to be
continuous over the whole domain

» Extension of finite volume methods: numerical fluxes are
needed to define values at element interfaces @
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Weak formulation and FE discretizations

Discontinuous Galerkin method (2)

N\

\

» Excellent for hyperbolic problems, some problems with elliptic
parabolic problems: artificial stabilization terms are needed, but
complete theory now available

» Easy extension to non conforming meshes and to variable
degree basis in more than one dimension

» High order approximations with more compact stencil: @

advantages for parallel implementations
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Polynomial spaces for DG discretizations

Polynomial spaces (1)

» Divide solution interval [0, L] in N, non overlapping elements

[xk_%,xk_i_%] k=1,..., N, of size Ax, = Xyl = X 1
h = max{Ax}
» For each element kK =1,..., N, define nonnegative integer
r = r(k) and local polynomial space
r _ r
Vi = Pl 10%02))

= {polynomials on [x,_1,x;, 1] of degree < r(k)}
2 2

» Define p = max{r(k),k =1,..., Ne} and global polynomial space
V,f = {gp P E LOO([O, L]), g0|[inl7Xk+l] S Vkr}
2 2
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Polynomial spaces for DG discretizations

Polynomial spaces (2)

> V,f is a finite dimensional linear space, of dimension at most
Ne x (p+1), V[ is a finite dimensional linear space, of
dimension r(k) +1

» For the weak form of the equation to hold, it is sufficient that
it holds for all ¢;, i =1,..., N of a linear basis of V,f

» Since the functions of V' are defined elementwise and each
element of V/ does not depend on the functions of V", k #/
the weak form of the equation will be imposed element by
element

» Increasing the value of p, a better approximation is achieved on
smooth functions; if p = 0, first order finite volume methods are
recovered
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Polynomial spaces for DG discretizations

At the element edges

» For ¢ € V' define gofi% = IimX%in% o(x), with x € [Xk—%’xk'f'%]

» Define the average and the jump of the scalar function ¢ € V,f’
across the edge X, 41 s
2

@hay =3 (v +90a) Telas = (vhy -9y

> Introduce a numerical flux function (a, b) and define for
P
Ch € Vh

>

fk+%(t) = (C;k+%(t), C,—(:_l ()

2
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Polynomial spaces for DG discretizations

Discontinuos Galerkin methods, elementwise (1)

» Assume that the weak form is satisfied for all test functions in
Vi, k=1,..., N,

» Assume that the approximate solution restricted to [x, 1, 1]
2 2
belongs to V|

» Let ¢, i=1,...,N(k) be a basis for V/ : it follows that if
Ch(X, t)|[Xk 1%, 1] € V[ one has
—3 k3

(k)
C(X7 t)‘[in%,Xk+%] ~ Ch(X7 t)‘[in%,XkJr%] = Z CkJ(t)QZ)kJ(X)
j=1
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Polynomial spaces for DG discretizations

Discontinuos Galerkin methods, elementwise (2)

The numerical solution will be determined by imposing that
h(%; t)l[x,_, x,,1] satisfies the weak form of the equation
2 2
for each [kalvxk#]- This is equivalent to:
2 2
for all k =1,..., N, for all basis functions ¢ ;(x),i =1,...,r(k)+1

1
k=3

N(k) -
> ctt) [ ustIonite) o
j=1 X

(1 (06, (O)0ki (i) = (6, (06,1 (0)6ki(xy)

Mt OPu,i
Flen(x, ) 2250 () die = 0

0
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Bases of polynomial spaces

Lagrange basis (1)

(k)

> Let ()<x1 (k)

< .-+ < xp ' nodes belonging to [Xk—%’xk-i-%]

» Lagrange basis functions on [xk_;,xk+;] are defined as
2 2

Ly,i(x) = nj;éim i=0,...,r(k),
i J
» Important property of Lagrange basis:
L) =1 L) =0 i 4]
» As a result, if Lagrange basis is chosen,

N(K)

Z i (E) Lieg () = ()

Coefficients ¢, (t) are the nodal values of c,(x, t) at x,(k) M|O[X
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Bases of polynomial spaces

Lagrange basis (2)

0.9 08
08
0.7
06
05
0.4
03
02

01 -06

-0.8
-1 -08 -06 -04 -02 0 02 04 06 08 1 1 -08 -06 -04 -02 0 02 04 06 08 1

» Lagrange basis with two nodes: linear approximation over each
element

» Each of the two basis functions is a polynomial of degree 1
» Their linear combination yields a polynomial of degree 1 that

approximates a given function @
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Bases of polynomial spaces

Lagrange basis (3)

08

06 02

04

0.2

-02 -0.8
%1 -08 -06 -04 -02 0 02 04 06 08 1 1 -08 -06 -04 -02 0 02 04 06 08 1

» Lagrange basis with three nodes: quadratic approximation over
each element

» Each of the three basis functions is a polynomial of degree 2
» Their linear combination yields a polynomial of degree 2 that

approximates a given function @
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Bases of polynomial spaces

Legendre basis (1)

» Consider polynomial basis 1, x — xx, (x — xx)?

[Xk—%’xk-l—%]
» Orthogonalize by Gram-Schmidt procedure to obtain Legendre
polynomials L, ;(x), i=0,...,p

sy (X —x¢)P on

» Can also be defined by the recurrence relation

2i +1 i .
i1 (X — Xk)Lk’;(X) — I'—l-—].Lk’i(X)7 I = 1,2, .

Lyiv1(x) =

Lko(x) =1,
Li1(x) = x — x¢

MIO X
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Bases of polynomial spaces

Legendre basis (2)

» Legendre polynomials: orthogonal basis

Xk+1
/ ’ Lk,P(X)Lk,q(X) dx =10 pF£q

» As a result, if Legendre basis is chosen,

/Xk+1
X

1
k=3

N(K)

(X t)Lk, dX = Z Ck.j t)/ i LkJ Lk’;(X) dx

1
2

» Coefficients ¢, j(t) are the modal coefficients of c¢,(x,t):
X, 1
CkJ(t) :/k+ (X t)Lk_, dX// w3 Lk 2 dx
in% B
MIO[X
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Bases of polynomial spaces

Legendre basis (3)

1

1 08 06 04 02 0 02 04 06 08 1 -1 -08 -06 -04 -02 0 02 04 06 08 1

» Legendre basis with two basis functions: linear approximation
over each element

» First basis function is a polynomial of degree 0 (constant),
second basis function is a polynomial of degree 1 (linear)

» Their linear combination yields a polynomial of degree 1
that approximates a given function @
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Bases of polynomial spaces

Legendre basis (4)
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» Legendre basis with three basis functions: quadratic
approximation over each element

» First basis function is a polynomial of degree 0 (constant),
second basis function is a polynomial of degree 1 (linear), third
basis function is a polynomial of degree 2 (quadratic)

» Their linear combination yields a polynomial of degree 2 @

that approximates a given function
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Fully discrete formulation: quadrature rules
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Fully discrete formulation: quadrature rules

Numerical integration formulae

» Galerkin methods require the computation of integrals like

Xetd %3 OPk.i
[ outont a7 et )75 09

k— k—

Nl
Nl

» Accurate numerical integration methods are required

» Gaussian integration (quadrature) formulae are usually
employed to achieve maximum accuracy
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Fully discrete formulation: quadrature rules

The master element

» Each element [xk_;,kar;] is mapped onto the master element
2 2
[—1,1] via the function

Ax XL+ X1
X:X(k)(f):Xk+ka Xk:#

» All integrals to be computed are reformulated by this change of
variables as integrals on the master element

%) 1 , 1 A A
/ f(x) dx = /1 f (X (§)) Xk (§)dE = /_1 “XH_%E)%CJ&

L _
k=3

» In this way, all numerical quadrature formulae only need to be

introduced on [—1,1]
MIO X
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Fully discrete formulation: quadrature rules

Gauss Legendre quadrature rules on [—1, 1]

> L q
| f@de= Y e
-1 i=1
with special points ¢;, i =1,...,q (Gaussian nodes) and special
numbers w;,i = 1,..., g (Gaussian weights)
» For Gauss - Legendre rules, nodes &;, i =1,...,q are the zeros
of the Legendre polynomial of degree q: L4(&) =0
» For Gauss - Legendre rules, weights w;, i =1,..., g are given by
2

w,
L (- EIL (P
» Gauss Legendre rules with g nodes are exact for polynomials of

degree up to 2g — 1
MIOIX]|
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Fully discrete formulation: quadrature rules

Two nodes Gauss Legendre quadrature rule

» Gaussian nodes and weights:

» Approximation of integral on master element

fro ()1 (3)

» Approximation of integral on generic element

[ 25) o 95)

» This formula is sufficiently accurate for computation of
solutions with P! (piecewise linear) approximation M|O[X
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Fully discrete formulation: quadrature rules

DG methods, fully discrete in space
For all k =1,..., N, for all basis functions ¢, j(x),i =1,...,r(k)+1

2 cki(Omij = =Fe, 1 (6) 6y, 1 () ilxys)
j=1

+?(c;k_%(t), c;fk_%(t))m,,-(xk_%) + Feilen(x, 1))
mij = Z Dr,j(X )¢k, N,

7 k) 3¢k, (k)
Fri(en(x, 1) =Y flen(x 1) B X IW
=1

Here x,(k), I=1,...,q denotes the Gaussian nodes mapped onto

X1 Xy 1 from [-1,1] MO[X]

L. Bonaventura (MOX) EASED Lecture 5 Keio University, 9.15.2015 32 /33



Fully discrete formulation: quadrature rules

Key concepts introduced in the fifth lecture

» Weak form of hyperbolic PDEs leads to DG discretization

» Approximation by polynomials expressed in terms of Lagrange
or Legendre basis

» Fully discrete formulation in space is obtained by numerical
quadrature rules

» A nonlinear system of ODEs is obtained that couples the
evolution of unknown coefficients in different elements
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