# Introduction to discontinuous finite element methods for hyperbolic equations, part (1)

#### Luca Bonaventura



Keio University, 9.15.2015



Outline of the lecture

Weak formulation and FE discretizations

Polynomial spaces for DG discretizations

Bases of polynomial spaces

Fully discrete formulation: quadrature rules



#### Key concepts introduced in the fifth lecture

- Weak formulation of hyperbolic PDEs as basis for Continuous Galerkin and Discontinuous Galerkin discretizations
- ► Finite element polynomial spaces for DG discretizations
- Lagrange and Legendre basis for s polynomial spaces of DG discretizations
- ► Fully discrete formulation in space: quadrature rules



Weak formulation and FE discretizations

#### Weak formulation and FE discretizations



#### Weak solution of conservation laws

$$\frac{\partial c}{\partial t} + \frac{\partial}{\partial x} f(c) = 0$$

The function c(x,s) is a weak solution of the nonlinear conservation law for  $s \in [0,t]$  with initial data  $c_0(x)$  and boundary data  $c(0,s) = g_0(s), \ c(L,s) = g_L(s)$  if for any  $\phi \in C^{\infty}([0,L] \times [0,t])$  it holds

$$\int_{0}^{L} c(x,t)\phi(x,t) dx + \int_{0}^{t} f(g_{L}(s))\phi(L,s) ds - \int_{0}^{t} f(g_{0}(s))\phi(0,s) ds$$
$$-\int_{0}^{t} \int_{0}^{L} \left[ c \frac{\partial \phi}{\partial s} + f(c) \frac{\partial \phi}{\partial x} \right] dx ds = 0$$

- ▶  $\phi \in \mathcal{C}^{\infty}([0, L] \times [0, T])$ : functions of space and time, differentiable infinitely many times
- ► For discretization purposes, a concept of weak solution with respect to space variables only is introduced MO

# Weak solution of conservation laws, space dependent test functions

The function c(x,t) is a weak solution (with respect to space) of the nonlinear conservation law for  $t \in [0,T]$  with initial data  $c_0(x)$  and boundary data  $c(0,t) = g_0(s), \ c(L,t) = g_L(t)$  if for any  $\phi \in \mathcal{C}^{\infty}([0,L])$  it holds

$$\int_{0}^{L} \frac{\partial}{\partial t} c(x, t) \phi(x) dx + f(g_{L}(t)) \phi(L) - f(g_{0}(t)) \phi(0)$$
$$- \int_{0}^{L} f(c(x, t)) \frac{\partial \phi}{\partial x}(x) dx = 0$$

- $\phi \in \mathcal{C}^{\infty}([0,L])$  : test functions of space only, differentiable infinitely many times
- ► Interpretation: we do not care about discontinuities in time and only focus on discontinuities in space
- ► Also known as weak form of the original PDE



# Galerkin methods (1)

- ► Assume that weak form is only satisfied for all test functions in a finite dimensional function space
- ► Assume that the approximate solution belongs to a finite dimensional function space
- ▶ Let  $\phi_i$ ,  $i=1,\ldots,N$  be a basis for the finite dimensional space of test functions, let  $\psi_j$ ,  $j=1,\ldots,M$  be a basis for the finite dimensional space of solutions ( $\psi$  trial functions)
- ► The approximate solution will be of the form

$$c(x,t) \approx c_h(x,t) = \sum_{j=1}^{M} c_j(t)\psi_j(x)$$



# Galerkin methods (2)

The approximate solution will be determined imposing the weak form of the equation for all  $\phi_i$ , i = 1, ..., N:

$$\sum_{j=1}^{M} c_i'(t) \int_0^L \psi_j(x) \phi_i(x) \ dx + f(g_L(t)) \phi_i(L) - f(g_0(t)) \phi_i(0)$$
$$- \int_0^L f(c_h(x,t)) \frac{\partial \phi_j}{\partial x}(x) \ dx = 0$$

- ► Finite dimensional system of ODEs whose unknowns are the solution coefficients  $c_i(t)$
- Many ways to choose test and basis functions: many different Galerkin methods

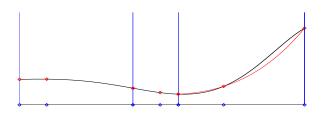


# Galerkin methods (3)

- For all methods: define mesh, decomposition of computational domain in subdomains called elements
- For all methods: test and basis functions depend on the mesh elements
- Test functions different from basis functions: Petrov - Galerkin methods
- ► Test functions identical to basis functions: standard Galerkin (or Ritz Galerkin) methods (only case we will see in detail)

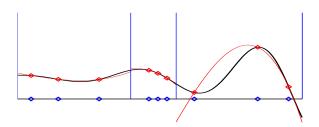


#### **Continuous Galerkin method**



- ► Test and basis functions: functions that are a) polynomials when restricted to each element and b) continuous functions over the whole domain
- ► Excellent for elliptic and parabolic problems, less so for hyperbolic problems: no natural way to introduce upwinding
- ► Difficulties in using non conforming meshes and in introducing variable degree basis in more than one dimension

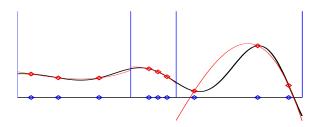
## Discontinuous Galerkin method (1)



- ► Test and basis functions: functions that are a) polynomials when restricted to each element, b) not required to be continuous over the whole domain
- ► Extension of finite volume methods: numerical fluxes are needed to define values at element interfaces

11 / 33

## **Discontinuous Galerkin method (2)**



- ► Excellent for hyperbolic problems, some problems with elliptic parabolic problems: artificial stabilization terms are needed, but complete theory now available
- ► Easy extension to non conforming meshes and to variable degree basis in more than one dimension
- ► High order approximations with more compact stencil: advantages for parallel implementations

12 / 33

L. Bonaventura (MOX) EASED Lecture 5 Keio University, 9.15.2015

Polynomial spaces for DG discretizations

## Polynomial spaces for DG discretizations



# Polynomial spaces (1)

- ▶ Divide solution interval [0, L] in  $N_e$  non overlapping elements  $[x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}]$   $k = 1, \ldots, N_e$  of size  $\Delta x_k = x_{k+\frac{1}{2}} x_{k-\frac{1}{2}},$   $h = \max\{\Delta x_k\}$
- ▶ For each element  $k = 1, ..., N_e$ , define nonnegative integer r = r(k) and local polynomial space

$$\begin{array}{rcl} V_k^r & = & \mathbb{P}^r([x_{k-\frac{1}{2}},x_{k+\frac{1}{2}}]) \\ & = & \left\{ \text{polynomials on } [x_{k-\frac{1}{2}},x_{i+\frac{1}{2}}] \text{ of degree} \leq & r(k) \right\} \end{array}$$

▶ Define  $p = \max\{r(k), k = 1, ..., N_e\}$  and global polynomial space

$$V_h^p = \left\{ \varphi : \varphi \in L^{\infty}([0,L]), \quad \varphi|_{[\mathsf{x}_{k-\frac{1}{2}},\mathsf{x}_{k+\frac{1}{2}}]} \in V_k^r \right\}$$



# Polynomial spaces (2)

- ▶  $V_h^p$  is a finite dimensional linear space, of dimension at most  $N_e \times (p+1)$ ,  $V_k^r$  is a finite dimensional linear space, of dimension r(k) + 1
- ▶ For the weak form of the equation to hold, it is sufficient that it holds for all  $\phi_i$ , i = 1,...,N of a linear basis of  $V_h^p$
- ▶ Since the functions of  $V_h^p$  are defined elementwise and each element of  $V_k^r$  does not depend on the functions of  $V_l^r$ ,  $k \neq l$  the weak form of the equation will be imposed element by element
- ▶ Increasing the value of p, a better approximation is achieved on smooth functions; if p = 0, first order finite volume methods are recovered



#### At the element edges

- $\qquad \qquad \textbf{For } \varphi \in V_h^\rho \text{ define } \varphi_{k\pm\frac{1}{2}}^\pm = \lim_{x \to x_{k\pm\frac{1}{2}}} \varphi(x), \text{ with } x \in [x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}]$
- ▶ Define the average and the jump of the scalar function  $\varphi \in V_h^p$  across the edge  $x_{k+\frac{1}{2}}$  as

$$\{\varphi\}_{k+\frac{1}{2}} = \frac{1}{2} \left( \varphi_{k+\frac{1}{2}}^+ + \varphi_{k+\frac{1}{2}}^- \right) \quad [[\varphi]]_{k+\frac{1}{2}} = \left( \varphi_{k+\frac{1}{2}}^+ - \varphi_{k-\frac{1}{2}}^- \right)$$

▶ Introduce a numerical flux function  $\hat{f}(a, b)$  and define for  $c_h \in V_h^p$ 

$$f_{k+\frac{1}{2}}(t) = \hat{f}(c_{h,k+\frac{1}{2}}^{-}(t), c_{k+\frac{1}{2}}^{+}(t))$$



## Discontinuos Galerkin methods, elementwise (1)

- ▶ Assume that the weak form is satisfied for all test functions in  $V_k^r, \ k=1,\ldots,N_e$
- ▶ Assume that the approximate solution restricted to  $[x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}]$  belongs to  $V_k^r$
- ▶ Let  $\phi_{k,i}$ ,  $i=1,\ldots,N(k)$  be a basis for  $V_k^r$ : it follows that if  $c_h(x,t)|_{[x_{k-\frac{1}{2}},x_{k+\frac{1}{2}}]} \in V_k^r$  one has

$$c(x,t)|_{[X_{k-\frac{1}{2}},X_{k+\frac{1}{2}}]} \approx c_h(x,t)|_{[X_{k-\frac{1}{2}},X_{k+\frac{1}{2}}]} = \sum_{j=1}^{N(k)} c_{k,j}(t)\phi_{k,j}(x)$$



## Discontinuos Galerkin methods, elementwise (2)

The numerical solution will be determined by imposing that  $c_h(x,t)|_{[x_{k-\frac{1}{2}},x_{k+\frac{1}{2}}]}$  satisfies the weak form of the equation for each  $[x_{k-\frac{1}{2}},x_{k+\frac{1}{2}}]$ . This is equivalent to:

for all 
$$k = 1, \dots, N_e$$
, for all basis functions  $\phi_{k,i}(x), i = 1, \dots, r(k) + 1$ 

$$\begin{split} &\sum_{j=1}^{N(k)} c_{k,j}'(t) \int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} \phi_{k,j}(x) \phi_{k,i}(x) \ dx \\ &+ \hat{f}(c_{h,k+\frac{1}{2}}^{-}(t), c_{h,k+\frac{1}{2}}^{+}(t)) \phi_{k,i}(x_{k+\frac{1}{2}}) - \hat{f}(c_{h,k-\frac{1}{2}}^{-}(t), c_{h,k-\frac{1}{2}}^{+}(t)) \phi_{k,i}(x_{k-\frac{1}{2}}) \\ &- \int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} f(c_h(x,t)) \frac{\partial \phi_{k,i}}{\partial x}(x) \ dx = 0 \end{split}$$



Bases of polynomial spaces

# Bases of polynomial spaces



## Lagrange basis (1)

- ▶ Let  $x_0^{(k)} < x_1^{(k)} < \dots < x_p^{(k)}$  nodes belonging to  $[x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}]$
- ▶ Lagrange basis functions on  $[x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}]$  are defined as

$$L_{k,i}(x) = \prod_{j \neq i} \frac{x - x_j^{(k)}}{x_i^{(k)} - x_i^{(k)}}$$
  $i = 0, \dots, r(k),$ 

Important property of Lagrange basis:

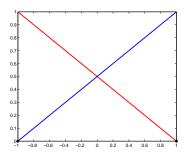
$$L_{k,i}(x_i^{(k)}) = 1, \quad L_{k,i}(x_i^{(k)}) = 0 \quad \mathbf{i} \neq \mathbf{j}$$

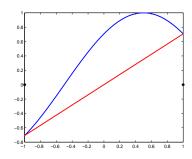
▶ As a result, if Lagrange basis is chosen,

$$c_h(x_l^{(k)},t) = \sum_{j=1}^{N(k)} c_{k,j}(t) L_{k,j}(x_l^{(k)}) = c_{k,l}(t)$$

Coefficients  $c_{k,l}(t)$  are the nodal values of  $c_h(x,t)$  at  $x_l^{(k)}$ 

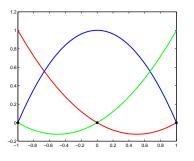
# Lagrange basis (2)

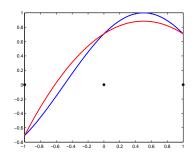




- ► Lagrange basis with two nodes: linear approximation over each element
- ► Each of the two basis functions is a polynomial of degree 1
- ► Their linear combination yields a polynomial of degree 1 that approximates a given function

# Lagrange basis (3)





- Lagrange basis with three nodes: quadratic approximation over each element
- ► Each of the three basis functions is a polynomial of degree 2
- ► Their linear combination yields a polynomial of degree 2 that approximates a given function

# Legendre basis (1)

- ► Consider polynomial basis  $1, x x_k, (x x_k)^2, \dots, (x x_k)^p$  on  $[x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}]$
- ▶ Orthogonalize by Gram-Schmidt procedure to obtain Legendre polynomials  $L_{k,i}(x)$ , i = 0, ..., p
- Can also be defined by the recurrence relation

$$L_{k,i+1}(x) = \frac{2i+1}{i+1}(x-x_k)L_{k,i}(x) - \frac{i}{i+1}L_{k,i}(x), \quad i = 1, 2, \dots$$

$$L_{k,0}(x) = 1,$$

$$L_{k,1}(x) = x - x_k$$



# Legendre basis (2)

► Legendre polynomials: orthogonal basis

$$\int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} L_{k,p}(x) L_{k,q}(x) \ dx = 0 \quad p \neq q$$

As a result, if Legendre basis is chosen,

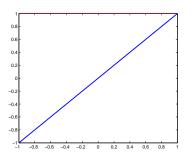
$$\int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} c_h(x,t) L_{k,i}(x) \ dx = \sum_{j=1}^{N(k)} c_{k,j}(t) \int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} L_{k,j}(x) L_{k,i}(x) \ dx$$

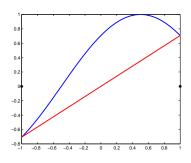
▶ Coefficients  $c_{k,j}(t)$  are the modal coefficients of  $c_h(x,t)$ :

$$c_{k,j}(t) = \int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} c_h(x,t) L_{k,j}(x) \ dx / \int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} L_{k,j}(x)^2 \ dx$$



# Legendre basis (3)

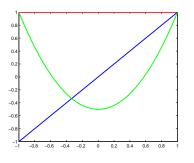


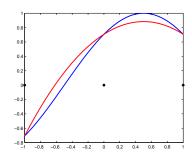


- ► Legendre basis with two basis functions: linear approximation over each element
- ► First basis function is a polynomial of degree 0 (constant), second basis function is a polynomial of degree 1 (linear)
- ► Their linear combination yields a polynomial of degree 1 that approximates a given function



# Legendre basis (4)





- ► Legendre basis with three basis functions: quadratic approximation over each element
- ► First basis function is a polynomial of degree 0 (constant), second basis function is a polynomial of degree 1 (linear), third basis function is a polynomial of degree 2 (quadratic)
- ► Their linear combination yields a polynomial of degree 2 that approximates a given function

Fully discrete formulation: quadrature rules

#### Fully discrete formulation: quadrature rules



#### Numerical integration formulae

► Galerkin methods require the computation of integrals like

$$\int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} \phi_{k,j}(x) \phi_{k,i}(x) \ dx \qquad \int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} f(c_h(x,t)) \frac{\partial \phi_{k,i}}{\partial x}(x)$$

- Accurate numerical integration methods are required
- Gaussian integration (quadrature) formulae are usually employed to achieve maximum accuracy



#### The master element

▶ Each element  $[x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}]$  is mapped onto the master element [-1, 1] via the function

$$x = x_{(k)}(\xi) = x_k + \frac{\Delta x_k}{2}\xi$$
  $x_k = \frac{x_{k-\frac{1}{2}} + x_{k+\frac{1}{2}}}{2}$ 

All integrals to be computed are reformulated by this change of variables as integrals on the master element

$$\int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} f(x) \ dx = \int_{-1}^{1} f(x_{(k)}(\xi)) \ x'_{(k)}(\xi) d\xi = \int_{-1}^{1} f(x_k + \frac{\Delta x_k}{2} \xi) \frac{\Delta x_k}{2} d\xi$$

▶ In this way, all numerical quadrature formulae only need to be introduced on [-1,1]



## Gauss Legendre quadrature rules on [-1,1]

$$\int_{-1}^{1} f(\xi) d\xi \approx \sum_{i=1}^{q} f(\xi_i) w_i$$

with special points  $\xi_i$ ,  $i=1,\ldots,q$  (Gaussian nodes) and special numbers  $w_i, i=1,\ldots,q$  (Gaussian weights)

- ▶ For Gauss Legendre rules, nodes  $\xi_i$ , i = 1, ..., q are the zeros of the Legendre polynomial of degree q:  $L_q(\xi_i) = 0$
- **F** For Gauss Legendre rules, weights  $w_i, i = 1, \dots, q$  are given by

$$w_i = \frac{2}{(1 - \xi_i^2)[L_q'(\xi_i)]^2}$$

▶ Gauss Legendre rules with q nodes are exact for polynomials of degree up to 2q - 1



#### Two nodes Gauss Legendre quadrature rule

Gaussian nodes and weights:

$$\xi_1 = -\frac{\sqrt{3}}{3}$$
  $\xi_2 = \frac{\sqrt{3}}{3}$   $w_1 = 1$   $w_2 = 1$ 

Approximation of integral on master element

$$\int_{-1}^{1} f(\xi) d\xi \approx \left[ f\left(-\frac{\sqrt{3}}{3}\right) + f\left(\frac{\sqrt{3}}{3}\right) \right]$$

Approximation of integral on generic element

$$\int_{x_{k-\frac{1}{2}}}^{x_{k+\frac{1}{2}}} f(x) \ dx \approx \left[ f\left(x_k - \frac{\sqrt{3}}{3} \frac{\Delta x_k}{2}\right) + f\left(x_k + \frac{\sqrt{3}}{3} \frac{\Delta x_k}{2}\right) \right] \frac{\Delta x_k}{2}$$

► This formula is sufficiently accurate for computation of solutions with P¹ (piecewise linear) approximation



#### DG methods, fully discrete in space

For all  $k = 1, ..., N_e$ , for all basis functions  $\phi_{k,i}(x), i = 1, ..., r(k) + 1$ 

$$\begin{split} \sum_{j=1}^{N(k)} c_{k,j}'(t) m_{i,j} &= -\hat{f}(c_{h,k+\frac{1}{2}}^{-}(t), c_{h,k+\frac{1}{2}}^{+}(t)) \phi_{k,i}(x_{k+\frac{1}{2}}) \\ &+ \hat{f}(c_{h,k-\frac{1}{2}}^{-}(t), c_{h,k-\frac{1}{2}}^{+}(t)) \phi_{k,i}(x_{k-\frac{1}{2}}) + F_{k,i}(c_{h}(x,t)) \\ m_{i,j} &= \sum_{l=1}^{q} \phi_{k,j}(x_{l}^{(k)}) \phi_{k,i}(x_{l}^{(k)}) w_{l} \\ F_{k,i}(c_{h}(x,t)) &= \sum_{l=1}^{q} f(c_{h}(x_{l}^{(k)},t)) \frac{\partial \phi_{k,i}}{\partial x}(x_{l}^{(k)}) w_{l} \end{split}$$

 $\int_{R,I} (Ch(x,t)) = \sum_{l=1}^{I} I(Ch(x_l-x_l)) \partial x (x_l-x_l) dx$ 

Here  $x_l^{(k)}$ , l = 1, ..., q denotes the Gaussian nodes mapped onto

 $x_{k-\frac{1}{2}}, x_{k+\frac{1}{2}}$  from [-1, 1]



#### Key concepts introduced in the fifth lecture

- Weak form of hyperbolic PDEs leads to DG discretization
- Approximation by polynomials expressed in terms of Lagrange or Legendre basis
- Fully discrete formulation in space is obtained by numerical quadrature rules
- ► A nonlinear system of ODEs is obtained that couples the evolution of unknown coefficients in different elements

